If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10z^2+33z-7=0
a = 10; b = 33; c = -7;
Δ = b2-4ac
Δ = 332-4·10·(-7)
Δ = 1369
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1369}=37$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(33)-37}{2*10}=\frac{-70}{20} =-3+1/2 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(33)+37}{2*10}=\frac{4}{20} =1/5 $
| 5=5/8x+1/2x+2 | | 5.5x=11 | | (120-12x)/7x=4/7 | | 5=5÷8x+1÷2x+2 | | F(x)=x2-2x+6 | | 2(×+1)=2/3x+9 | | 4/7x=9/14 | | 4x-5+3x+15=90 | | 3.4m=20.43.4=20.4 | | 1/3x=1/4x+x= | | 112x-63=0 | | 2x/2=7,5 | | (2x+6)×6=(3x+5)×5 | | 57+2x=15 | | 55=s+54 | | 4/7x=9/4 | | 30=a-46 | | -6.2x=-186 | | 10=-2y-8 | | 61=3a+58 | | 7x–14=–28, | | x+10x+50x=180 | | 57=2a+5 | | 3x+9+5x-23=180 | | 62=5p-33 | | 5/6x-1/4=5/12 | | 61=10s-99 | | -x+39=360 | | 4x-6(x-1)=23 | | x/x+20=24/54 | | 3s-26=34 | | 4s+25=5s+20 |